Andrea's Synopsis of All of Chapter 2
Here’s my crash course of chapter 2. I claim you could do the whole problem set after you read this.
V \(\rightarrow\) E
\[\vec{E} = -\nabla V\]E \(\rightarrow\) F
\[\vec{F} = q\vec{E}\]F \(\rightarrow\) W
\[W = \int \vec{F} \cdot d\vec{l}\]V \(\rightarrow\) W
\[W = q V\]or if you have a collection of charges then…
\[W = \frac{1}{2}\int \rho V d\tau\](That’s same formula as the one above it. The \(\frac{1}{2}\) is annoying but it’s just because of double-counting.)
E \(\rightarrow\) W
This is also just the formula above translated into \(\vec{E}\) using Gauss’ Law.
\[W = \frac{\epsilon_0}{2} \int E^2 d\tau\]Gauss’s law, \(\rho\) \(\rightarrow\) E
\[\oint \vec{E} \cdot d\vec{a} = \frac{1}{\epsilon_0} Q_{\rm encl}\]E \(\rightarrow \rho\) (Gauss’ law backwards)
\[\rho = \epsilon_0 \nabla \cdot \vec{E}\]